

TERMINATION OF ALGOR|THMS

by

Zohar Manna

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

April 1968
Submitted to the Carnegie=Mellon University Gﬁ)r:”Tn nra
in partial fulfillment of the requirements !
for the degree of Doctor of Philosophy - JUN21 1968

Ubw:_‘;{U‘[]‘[_‘g

This work was supported by the Advanced Research Pro jects
Agency of the Office of the Secretary of Defense (SD~146)
and is monitored by the Air Force Office of Scientific
Research, Distribution of this document is unlimited,

P

ABSTRACT

(

4
The thesis contains two parts which are self-contained

units, {

In Part) we present several results on the relation

be*:::S)
I. “the problem of termination and equivalence of programs and
abstract programs, and

2, “the first order predicate calculus.

Part 1j)is concerned with the relation befwefgﬁ

. ‘the termination of interpreted graphs, and

2. properties of well-ordered sets and graph theory,

AN

ACKNOWLEDGMENTS

| am indebted to Professors Robert Floyd and Alan Perlis for
their guidance in this research,

| also wish to thank Professors David Cooper and Abraham Ginzburg
for their help in the early stages of my work,

| received valuable comments from Professor John McCarthy,
Professor Peter Andrews, Professor Donald Loveland, and Dr. David
Shafer,

| am also grateful to the graduate students in the Department of
Computer Science for their assistance, especially: Richard Waldinger,

James King, Darius trani, Frederick Haney and Robert Wagner.

i I st et g 1

Ieble of Qontents

PART |

lﬂm&D.'---
Chapter |: Mathematical Background

lel The (First=Order) Predicate Caleulus, ., . ., .,
1.2 The Validity=Problem of the Predicate Calculus, .
l.3Dlrec'l'edGraphs.................
Chapter 2: Definitions
2.1 AbsfracfPrograms................
2.2Programs.....................
2.3 Interpreted Programs. o« « o o o o o o ¢ o o [P
Chapter 3: Termination of Programs and Abstract Programs
3.1 The Algorithm to Construct wAP (Algorithm 1), , .
3.2 Termination of Programs (Theorem |) . . v e e e
3.3 Termination of Abstract Programs (Theorem 2), , .
3.4 The Termination-Problem of Abstract Programs. , .
Chapter 4: Equivalence of Programs and Abstract Programs
4.1 The Algorithm to Construct W

AP,A
4.2 Equivalence of Programs (Theorem 3) , ,

pr (Algorithm 2),

4.3 Equivalence of Abstract Programs (Theorem 4), ., .

Chapter 5: Termlination of Non=Deterministic Programs and
Non-Deterministic Abstract Programs

5.1 Deflnlﬂons...................

5.2 Weak Termination (Theorems 5 and 6) v v e e v .

27
35
37

4|
46

59

5.3 The Algorithm to Oonstruct lh, (Algorithm 3), . .

5.4 Strong Termination of Non-Deterministic
(Theorem 7) o o o o o o s ¢ o 6 s o« o &

Programs

5.5 Strong Termination of Non=Deterministic Abstract

Programs (Theorem 8). . o« o s o o o o

Beferem............--......

PART 11

|!!1'r'oduC‘f!O!|. s o & o o 8 o 8 6 ¢ 0 o
Chapter |: Mathematical Background

l.] Well=Ordered Sets

1.2 Directed Graphs . + + . » «

Chapter 2: Definitions « + « & « + &

Chapter 3: Termination of Interpreted Graphs

3.0 Theorem | & o ¢« o o ¢ ¢ o o s o o o

3.2 Theorem 2 . ., .
Chapter 4: Applications
4.1 Example | . . .
4,2 Example 2 . . .

References. . « « « o o o«

6l

70

72

74
75
79

83

88

96

99

ATt S0 Lo s

about the equivalence of abstract programs can be obtained just by
applying well~known results in logic.
The corresponding result for programs suggests a new approach for

proving the equivalence and correctness of 'real! programs.

Chapter 5 is concerned mainly with the strong termination of
non=deterministic programs and non=-deterministic abstract programs,

In a non-deterministic program an assignment of values to its
Input variables does not necessarily define a unique execution of the
program. A non-deterministic program is said to terminate strongly
iIf for each assignment of values to its inp:: variables all possible
executions terminate.

The results of this chapter are a generalization of the results
obtalned in Chapter 3, These results have an application in proving

the convergence of recursively defined functions.

INTRODUCTION

In this part of the thesis we shall present several results on the
relation between:
I, the problem of termination and equivalence of programs and
abstract programs, and

2, the first order predicate calculus,

An abstract program (program schema) is a program, but with
function, predicate and constant symbols, Instead of specified
functions, predicates and constants, Thus, an abstract program AP
may be thought of as representing a family of (real) programs. By
specifying an Interpretation § for the symbois of AP, a program (AP,9)
of this family Is obtained, The program contains a set of input
variables. Each assignment of values to the input variabies definms

s (unique) execution of the program,

Chapter | (Mathematical Background) and Chapter 2 (Definitions)

are introductory chapters.

Chapter 3 is concerned with the termination problem of programs
and abstract programs, A program (AP,3) Is sald to terminate 1f all
possible executions of the program terminate, An abstract program AP
Is sald to torminate if for every interpretation 93, the program (AP,3)
terminates,

Glven an abstract program AP, an algorithm Is described +o
construct a weli=-formed formula wAP of the first order predicate
calculus, such that AP terminates if and only If W

AP
i.e,, "“AP is valld. This Implies that conclusions about the

Is unsatistiable,

termination of abstract programs can be obtained just by applying
well=known results in logic,

A corresponding result for programs is presented.

Chapter 4 is concerned with the equivalence problem of programs
and abstract prcgrams,

Two programs (AP,3) and (AP',%) are sald to be equivalent if
their 'correspondlng' execution sequences aiways terminate and give
the same final value. Two abstract programs AP and AP' are said to
be equivalent if for every Interpretation J, the corresponding
programs (AP,Y) and (AP',3) ars equivalent.

Glven two abstract programs AP and AP', an algorithm is described
to construct well-formed formula W py of the first-order predicate

AP,A

calculus, such that AP and AP' are equivalent If and only if wAP AP
¥

is unsatisfiable, f.e., ~W P AP! is valld, Consequently, conclusions
»

A

CHAPTER |: MATHEMATICAL BACKGROUND

I.1 The (Elrst-Order) Predicate Calculus
In this section we shall partially follow the exposition of Davis

and Putnam [1960].

The symbcls of which our formulas are constructed are:

(a) Improper symbols

punctuaiion marks ,)
logical symbols ~DA Vel
primitive constants T and F.

(b) Oonstants
n

n-adic function constants f' tizl,nz20
[f? are called Indlvidual constantsl,
n-adlc predicate constants p';’ (ix21,nz20
[pc; are called propositionsl constantsl.

{c) Varlables
individual variables X (2N
n-adic predicate variables qu' (ixt,n20)

[q? are called propositional varlables].(”

lIn the following, we shall use also y, 2s individual variables
and a, as individual constants.

The subscripts and the superscripts will be omitted whenever their

omission can cause no confusion,

Among all the expressions which can be formed using these symbols,

we distinguish three classes which are defined recursively as follows:

(2) Jorms

Each individual variable X and each individual constant fc"

is a term;
It +|,f2,...,1n (n > 1) are terms, then so is f?(f,,fz,...,fn);
The terms consist exactly of the expressions generated by |

and 2,

(b) Atomjc formulas

l.
2.

T, F, p? and q? are atomic formulas,

If fl'*z""'fn (n > 1) are terms, then the expressions

n n

p'(fl,fz,...,fn) and q'('f',fz,...,?n) are atomic formulas,
The atemic formulas consist axactly of the expressions

generated by | and 2,

(c) Mell-formed formulas (wff's)

l.
2'

3.

An atomic formula Is a wff,

If R Is a wff, then so are ~R, (xR [xI Is said to be

unlversallz quantified], and (ﬂxl)R I:xI is said to be
existentially quantified].

If Rand S are wtfs, then so are (R D)y, RAS), (RVS),

and (R 5 3),

4, The wff's conslst exactly of the expressions generated by |,

2, and 3,

Parentheses will be omitted whenever their omission can cause no

confusion,

An occurrence of X, in a wff R Is a bound occurrence if it Is in

a wf-part of R of the form (xI)S or (HxI)S. An occurrence of x, which

i
is not bound is called a free occurrence. x; Is free in R if it has

at least one free occurrence In R. R is closed if it has no free

individual variables,

Our next step is to single out from the class of wif's those which
are logically valid. This can be done either by specifying axioms and
rules of Interference or by referring to "interpretations" of the wff's

of the system, and by a basic result due to GBdel (Gdel Comp leteness

[heorem) both of these procedures will lead to the same :lass of
formulas, For our present purposes it is most convenient to use the

latter formulation employing "interpretation™.

An interpretation J for a wff W consists of a non-empty set of
elements Ds (called the domain of the Interpretation) and assignments
to the constants of W:

|, To each function constant f? which occurs in W, we assign a

tota| function of n veriables ranging over D., whose values

3

are inD_. [1f n = 0, the individual constant f? Is assigned

R

some fixed etement of D_.]

3

2, To each predicate constant p? which occurs In W, we assign a
Iotal function of n variables ranging over 03, whose values
are Tor F. [1f n = 0, the propositional constant p? Is

assigned the value T or F.]

Glven a wff W and an Interpretation § for W [notation: Qiﬂl)]'
An assignment T for (W,%) consists of assignments to the varjables
of W:

I. To each free individual variable X in W, we assign some

fixed element of D_.

3

2. To each predicate variable q? which occurs in W, we assign a
tota| function of n variables ranging over Ds, whose values

are Tor F, [If n = 0, the propositional variable q? is

assigned the value T or F.]

Let W be a wtf, Then given an int.~pretation § for W and an
assignment T for (W, [notation: (W,Q,F)], a value T or F will be
assigned to (W,3,). This value is obtained simply by using the

assignments of § and T', interpreting F as falsehood and T as truth,

PR VIR, it

o

using the usual truth tables of ~, A, V, D, and %, and interpreting

the universally and existentially quantified variables in the standard

way,

(W,3) is said to be:

l. yalid, 1f for every assignment I', (W,3,I') has the value T,
2. sgatisfijable (or consistent), if (W,3,I') has the value T for some

assignment T,

3, unsatisfiable, if it is not satisfiable.

Clearly, (W,3) is valid If and oniy If (W, is unsatisfliable,

A wff W is sald to be:

. yalid, if for every interpretation §, (W,3) is valid.

2, satisflable (or consistent), if (W,Y) is satisfiable for some
interpretation J.

3, unsatisfiable, if it is not satisfiable,

Clearly, W Is valid if and only if ~W Is unsatisfiable.

A wif is called guantifier free if it contains no occurrence of
(xl) or (Exl).

A wff is In prenex rmal form, if [t begins with a sequence of

quantifiers (xi) and (Hxi) in which no varlable occurs more than once

(called the prefix), and if the sequence is followed by a quantifier
free wff (called the matrix).

The dis junction of the wifls RI'RZ""‘ and R nt N2 I, is the
wif R' v R V...V R.s their conjunction is the wff R‘ AR, A cis A Ry

A litera] Is a wtf which is either an atomic formula or of the
form ~R, where R Is atomic,

A clause Is a disjunction RV Ry Voo v R In which each R;
is a literal and in which no atomfc formula occurs twice,

A conjunction of clauses is said to be a wff in con junctive

normal form,

Let W be a wif in prenex normal form. Then the fupctional form
Qf W Is defined as follows:

Let the variables in the prefix of W (in order of occurrence) be
x'.xz....,xN. Let the existentially quantified variables In the

prefix be X; aX

,...,xi « Then for every Jr 1 € j <M
[

i M

2

l. the quan*:fier (:ixl) Is to be deleted from the prefix, and
J

2, each occurrence of X in the matrix of W is to be replaced

by an occurrence of the term fq (xkl,xk reeesX), where
2

J
(xk‘). (><k)....,(xk), 920, are all the universal
2

quantifiers that precede (:E{x') In the prefix of W and f?
J J

R S et st e -

is the first g-adic function constant which does not occur

In W and has not been used previously in this process.

We shall use the following known result:

W Is satisfiable if and only if its functional form is satisfiable.

e v e oo ey - e S s

1.2 Jhe Valldity=Probiem of the Predicate~Calculus

The validity problem of the predicate-calculus Js undecidable,

That is, there can be no algorithm which takes as input any wff and in

all cases torminates with a decision as to whether the wff is valid or

not,

But, the validlfz-groblem of the predicate~calculys Is
semi~decidable, That Is, there are algorithms, called sem|-decison

grocédures, which take as input any wff and: (1) 1f the wtt Is valid
the algorithm will stop and say so; (2) |f the wtf Is not valid the
algorithm will never stop.

The algorithms have undergone successijve reductions so that by
now they have a simple structure, In this work, we shal| use one

recent algorithm based on the resolution principle (Robinson [1965]),

Though the validity-problem of the predicate~calculys |s undecidable,
there nevertheless ex|st classes of wff's for which the problem is
decidable, For example, the validity=problem is decidable for the

following three classes:(')

I, Wl = {wlw Is a wif In prenex-normal form, without function
constants, and with prefix of the form ¥...¥3...9},

2, wz = {wlw Is a wff in prenex-normal torm, without function
constants, and with prefix of the form ¥o..va¥.,..¥},

3. W3 = {wlw Is a wtf in prenex-normal form, without function

constants, and with prefix of the form ¥,,.vaav,. v},

'See Ackermann L9543 or Church [19567 Section 4.

B L

1.3 Dlrected Graphs

A directed graph G is an ordered triple <V,L,A> where:

'.
2.

3.

V is a non-empty set of elements called the yertices of G;
L Is a non-empty set of elements called the Jabels of G; and
A is a set of ordered triples (v,4,v'), where veV, v'ev,

and fLel.. These triples are called the arcs of G.

If Vand L are finite sets, G is called a finite directed graph.

Let & = (v,4,v') be an arc of a directed graph. Then, we define:

ll
2.

3.

v = the jipitial yvertex of the arc,
4 - the label of the arc,

v! = the terminal vertex of the arc.

And we shall say that the arc o leads from the vertex v fo the

vertex v!,

Let v be a vertex of a directed graph. Then,

The number (finite or infinite) of arcs o, aeA, s.t. v is the

initial vertex of o Is called the out-degree of v.

The number (finite or infinite) of arcs o, @A, s,t. v is the

terminal vertex of «a is called the in-degree of v.

A finite path of a graph G (path, for short) Is a finite sequence

of narcs of G, n> |,

(v, &, ,v,), (v, ,4 ,v
i ll' Py ? iz’ lz’ i

)’ see (v ‘)V .)’
| ! in' 'n i

3 n+l

s.t. the terminal vertex of each arc coinclides with the Initial vertex
of the succeeding arcs,

i are @n the path, and
n+l

that the path joins the vertices v'l and vin+l.

We say that the vertices v'l,vi seesasV
2

TN vte vt oo

CHAPTER 2: DEFINITIONS

2,1 Abstract Programs

. An abstract program (or program schema) AP consists of:

- A finite directed graph <V,L,A>, with
(a) exactly one vertex Sey with in-degree 0 (i,e., no arcs leading
to S), called the start vertex;

(b

~

exactly one vertex HeV with out-degree 0 (i.e., no arcs
leading from H), called the halt vertex; and

(c) every vertex veV is on some path that joins $ and H.

2, (2) a set of m, m2 0, distinct individual variables

< |

= (y,,yz,...,ym), called input variables; and

(b) a set of n, n2 1, distinct individual variables

X = (x',xz....,xn), called program variables,

3. With each arc o = (v,L,v')¢A there is associated:

(8) a quantifier free wtf Py called the test predicate

- U (.) B (-5 (@)
(b) an n-tuple fa = (T' , ‘rz ,...,fn

assignment function o_fg.“)

f a; and

) of terms called the

The wff Py does not contain any predicate variables,

lThe intended interpretation is
()

ve it ?, then [replace simultaneously each variable xi by Ti and

go to v'],

The wff 9, and the terms *fa) do not contain Individual variables
other than 7 and ;.(') If v =5(i.e., @ Is an arc leading from the
stert vertex) the wff ¥, and the terms f? do not contain the program

variables x,

In addition, an abstract program should satisfy the following

restriction:

4. For every vertex v(v # H), if a',az,...,aN is the set of all arcs

leading from v, the set of the test predicates Py 1Py revesPy s
A N

(a) complete, i.e., (X)(y) [, Vo, V...V, 1isvalid, and
- I 2 N

(b) mutually exclusive, i.e., (3;)(1;) [¢b A Py) is unsatisfiable
i J

for every pair (i,j), I i # j< N

IWe have restricted Py to be a quantifier free wff. However, all
the theorems presented in this work are true also in the case when Py
is any wtf that does not contain free individual varialles other than

y and x.

Example
The following diagram represents an abstract program, We shall

refer later to this abstract program as AP*,

where

individual constant,

-
]

monadic function constant,
p - monadic predicate constant,
y - input variable,

x = program variable,

2.2 Programs
An linterpretation § oi an abstract program AP consists of a

non-empty set of elements D3 (called the domain of the interpretation)

and assignments to the constants of AP:

1. To each function constant f? which occurs in AP, we assign a
total function of n variables ranging over D_, whose values

3

are in Dy [I1f n =0, the individual constant f? Is assigned

3

some fixed element of D_.]

3

2, To each predicate constant p? which occurs In AP, we assign a
total function of n variables ranging over 03' whose values
are Tor F, [If n =0, the propositional constant p? is

assigned the value T or F.]

Let AP be an abstract program and 3 an interpretaticn of AP, The

pair (AP,3) Is called a program.

Examp le
Consider the abstract program AP* of sec, 2.1, Let Q* be the

following interpretation of AP*:
D Is I (the domain of the Integers),
f(x) is x + 1,
p{x) is x = 0, and

ais =1,

Then the program (AP*,3*) can be represented by the diagram:

£

In order to give a rough idea of what will foliow in the next

section, let us only mention that the Algol meaning of this diagram is:

START: _if y=0 then [x +y; go 1o 3] else [x « ~1; go to 1];

: 1f x=0 then [x * x; go to 3] else [x + x + I; go fo 2);

2: it x=0 thep [x + -I; go to 3] else [x * x; HALT);
3: f x=0 then [x + x; HALT) else [x « x + I; go to 3].

2.3 Interpreted Programs

Let (AP,3) be a program. Then tho result obtained by assigning

)m, for the input variables 7 of the program = is called
n

values ;, ;c(D

3
the interpreted program (APQ_,;_.

Example

By assigning the value | to the input variable y of the program

(AP*,3*) of sec. 2.2, we obtain the interpreted program (AP*,9%, 1) :

lPr'ograms with no Input variables (i.,e., m = 0) will be considered
as interpreted programs,

20

The interpreted program (AP,S,-'V-) defines an execution sequence

<AP,3,-2 which is a (finite or infinite) sequence of triples

(4 D] (l),;(l))' U(Z)’V(Z)';(Z))' “(3) v(3) <)

" ,v , , Yyeos
where,
l. (t(‘i),v(j),;('j))c L xVx (Ds)n for every j,j 2 I
2. ",y Y is the first triple in the sequence if and
only if there exists an arc o = (S,z“),v(”)eA s.t.

g =T ana XD =T @M

3. (z(‘j),v(j),;(j)) and (I(J+I),v('j+l),-;(j+l)) are two successive

triples in the sequence if and only If there exists an arc

a = (v(j),z(j“),v(jH)NA s.t.

o &P =T ane XU 2T 5P
4, The sequence is finite and (t(q),v(q),;(q)), qx |, is the:
last triple of the sequence if and only if v(q) =H. In

Icpa(:/') and ?a(';) stand for the result of substituting ; for 7 in
9y and fa'

2 (-(,j) - T oo + of i+uti

Py (X 77 sY) and 1, (<77 ,y) stand for the result of substituting

b for x and y for y In Py and +a.

21

(q)

this case ;: is called the value of the execution sequence

<AP,3,y> and is denoted by val <AP,Y>

In other words, execution always starts at the start vertex. On

execution of the jfh step, j 2 I, control moves along the arc

o = (v(J-'),t(j),v(J)), where v(o) = S, and va represents the condition

that this arc is entered. The value of each program variable x; Is

th

replaced in the j :a)

step by the current value of t."', simultanecusly.

So, ;(J) represents the current value of the program variables % after

th

executing the j = step. Execution stops whenever control reaches the

halt vertex,

Example
The interpreted program (AP*,3*,1) defines the following execution

sequence <AP*,*, |>:

(,1,-1,(3,2,0),(5,3,~1),(7,3,0),(8,H,0).,

Let (AP,S,;5 be an interpreted program, and let veV be any vertex
of AP. Let & be a specified total predicate from (DS)n into {T,F}.
Then,

l. & is called a valid predicate of v for (AP,gf;)

if

22

VE, Ec (Ds)n: _if there exists a triple of the form (l,,v,E)

in <AP,3,;>, for some LelL, then 6(E) =T,

2. 6 Is called the minimal valid predicate of v for (AP,3,y)

it

3

VE, € (0)": 6(8) = T if and only if there exists a triple
of the form (t,v,E) in <AP,3,V>, for some Ael.

Example

The predicate x < O is a valid predicate, while the predicate
x = =l is the minimal valid predicate, of the vertex | for the

interpreted program (AP*,3%,1),

23

CHAPTER 3: TERMINATION OF PROGRAMS AND ABSTRACT PROGRAMS

3,1 The Algorithm to Construct AP

In this section we shall describe an algorithm to construct from
& given abstract program AP a wff wAP, called the wif of AP. In
section 3.3 we shall state results about the relation between AP

and wAP'

Algorithm |

Let AP be any abstract program with program variables

x = (x',xz,...,xn), n > |, and input variables (yl,yz,...,ym), m> 0.

We shall construct the wff wAP in three steps:

Step |

Associate with every vertex vi of AP a predicate variable 9;»

where the qi's are distinct n-adic predicate variables.

Step 2

Let a = (vi,t,vj) be any arc of AP.

In step | we have associated with the vertex v the predicate
variable GIY and with the vertex v\j the predicate variable qJ.

We shall define the wff wa (the wff of the arc a) as

%y: qi(x) A Py p qj(fa).

24

But,
. if vi = S (i.e., v is the start verteax of AP), then replace

the occurrence of qi(;5 in %y by T, and

2. if Vj =H (i.e., vJ is the halt vertax of AP), then replace

the occurrence of qj(tu) in %1 by F.

Step 3
Let IR D YRR be the set of all the arcs of AP. Then define

wAP (the wff of AP) as:

- n
GO AW A L..AW]
@, " a, oy

lNo‘l'e that the input variables ; are free variables in wAP.

25

Example
The wff wAP* of the abstract program AP* of sec. 2.l will be

obtained as follows: q2

Combining steps | and 2 we ob*ain

E T A ~ply) Dql(a)
2t T A ply) DqB(y)
3} ql(x) A ~p(x) qu(f(x))
w4: q|(x) A px) Dq3(x)
5 qz(x) A p(x) Dq—,)(a)

6 qz(x) A~p(x) OF

26

W7: qs(x) A ~p(x) O qs(f(x))
wa: q3(x) A plx)DF

Then by step 3 it follows that,

Wapx (x)[wl AW, A Ws AW AW

5

AW

6

AW

7

A Waj

27

3.2 Termination of ‘Programs

Definition |
The progrem (AP,3) is said to terminate If ¥y, ye (D,)", the

3

execution sequence <AP,3,;> is finite.

We are ready now to state the main result of this chapter.

Theorem |
The program (AP,3) terminates
if and only it

(WAP,:}) is unsatisfiable [or equivalently, (~WAP,3) is valldl,

Proof

We shall prove that the program (AP,3) does not terminate if and
only 1f (WAP,S) is satisfiable.

l. (AP,Y) does not terminate = (WAP,S) is satisfiable.

1f the program (AP,3) does not terminate, there exists a
;, ;c(Ds)m, such that the execution sequence <AP,X,Y> is Infinite,

Let us assign to each predicate variable 9, in wAP' the minimal
valid predicate of the vertex v for the interpreted program (AP,3,§).

Note that since the execution sequence <AP,3,;> is infinite, i.e.,
control never reaches the halt vertex, it follows that the predicate F

is the minimal valid predicate of the vertex H for the interpreted

program (AP, ,;) .

28

Let T' consist of the above assignments for the q; 's and with Y—
assigned to 7 Following the construction of WM, (see Algorithm 1),
It is clear that the value of (wAP,s,r') isT, i.e., (WAP,S) is

satisfiable,and this completes the proof in one direction.

2. (NAP,S) is satisfiable = (AP,y) does not terminate.

I f (WAP,S) is satisfiable, |+ means that there exists an
assignment I' for (WAP,S) such that the value of (WAP,S,F) isT, T
consists of assignments of specified total predicates 6i‘ mapping
ﬂh)n into {T,F}, for the predicate variables ;. and an assignment
;3 ;i(Ds)m, for the free variables y.

By the construction of wAP (see Algorithm 1), this implies that
each 6i is a valid predicate of the vertex vi for (AP,S;;), and
therefore that F is a valid predicate of the halt vertex for (AP,S,V).

This implies that the execution sequence <AP,3,;; is infinite
(i.e., ececution does not reach the halt vertex). So, (AP,3) does not
terminate.

q.e.d.

29

Exampie
Let us consider the program (AF,¥), where

I, the abstract program AP is

CSP —ty_ T\ P00

~p(x) x + f(x)

|

©

and

2, the interpretation § is

+
D§ =1 (i.,e.,, the domain of the non-negative Integers),

p({x) is x = 0, and
if x>0

f(x) is x = |, where x = | is defined as {XBI it x

The program (Aﬁ,ﬁ) can be represented by the domain D§ = I+ and

the diagram

x#0 x +x=|

Using Algorithm | we can construct wAT,-, which is

U [T A T > ql(y)]
A [ql(x) A ~p(x) D q,(t0)]
A [q'(x) A plx)D F]},

The pair (w/@—,’ii) can be represented by the domain D§ = I+ and

o~

Wi ol [T A 7 >q,(m]
A[q'(x)Axﬁ03q|(x=l)]
A[ql(x)/\x=03 F 1.

We shall prove that the program (A'lg,g) terminates by using
Theorem |, i.e., by proving that (WA"IE;S) unsatisfiable.
We shall use the first order thecry N, which formalizes elementary
number theory. We assume that the reader is familiar with this fheory“).
The theorems of N that we shall use are:

T le)ql(xl) o) Cflxz)[q| (x,) A (><3)[><3 < X, D~q|(x3)]]
(an instance of the Least-number Principle), and

T2: x#00x=* < x].
Thus, in order fo prove that (W,=3) is unsatistiable, we shall

A T, is unsatisfiable (considering x = 0, x < y

| 2
and x =~ | just as symbols, i.e., the predicates x = 0 and x < y

prove that w3 AT
AP

as predicate constants and the function x *+ | as function constant) .

'See Kleene [1950] Chapter 8, Mendelson [1964] Chapter 3, or
Kleene [1967] Section 38,

31

The Proof:

The prenex normal form of Vﬁ'v A TI A T2 is:
AP

ze)(xl)(xs)(x)[q'(y)
A [ql(x) Ax#O0 D qilxs]
/\[q‘(x) Ax=0 2 F]
A [ql(xl) o [q'(xz)/\ [x3< x23~q|(x3)]]]

Alx#0 ox= 1 < x]}.

Then by changing the matrix to conjuctive normal form and
replacing X, by a and y by b (a2 and b are individual variables), We

obtain the wff W¢:

(xl)(x3)(x)l ql(b)
A I}«ql(x) Vx =0 V ql(x‘ (DY
A qul(x) Vx #0)
A qu,(x') Vg a]
A qu|(x|) Vx31¢a V~ql(x3)]
X

Alx=0 v 21 <x]}.

wis

Clearly, % AT AT, is satisfiable if and only 1
satisfiable.

We are going to prove that W* is unsatisfiable by using the
resclution principle. We assume that the reader is familiar with this
technique (see Robinson [1965]).

The list of clauses is:

I ql(b)

2. ~q|(x), x =0, ql(x =

32

3, ~q|(x) , X £ 0
4. ~ql(x|), q|(a)
5. ~q|(x|), xsq{ a,~q'(x3)
6. x=0, x>1c< x,

Then by resolving we obtain:
7. ql(a) by
8. at#o by
9. ql(a‘ 1) by
10, a%* I<a by
. ~q a* 1) by
2. /7 by

Iand4(x|=b)

3 (x = a) and 7

2 (x =a), 7and 8

6 (x = a) and 8

5(xl =a,x3=a= 1Y, 7 and 10
9 and |1

So, by resolving, we inferred the empty clause L—/, which implies

that W* is unsatisfiable, i.e., (on3,§) is unsatisfiable. Therefore

it follows, by Theorem |, that the program (AFS§) terminates.

33

3.3 Termination of Abstract Programs

Definition 2
An abstract program AP is said to terminate if for every

interpretation §, the program (AP,3) terminates.

The following theorem follows from Theorem | and Definition 2.
Theorem 2

An abstract program AP terminates
if and only if

Wap is unsatisfiable [or equivalently, ~Myp is valid].

Proof

AP terminates,
if and only if (follows by Definition 2)

for every interpretation §, the program (AP,3) terminates,
if and only if (follows by Theorem |)

for every interpretation g, (WAP,S) is unsatisfiable,
if and only if

wAP is unsatisfiable. q.e.d.

Theorem 2 transforms completely the problem of termination of
abstract programs to an equivalent problem in logic. This enables us
to obtain many results about the probtem of termination of abstract
programs, just by using well-known results in logic. The following
example illustrates one of them. Other results are presented in the

next section.

Example

We shall prove that the abstract program AP* (see sec. 2.1)
terminates, by using Theorem 2, i.e., by proving that wAP* is
unsatisfiable.

In sec. 3.1 we have already constructed wAP*' which is

0ol [T A~pty)yD q (@]
AL T A Ply) D q5(y)]
A g, (x) A ~plx) D g, (£(x))]
A [ql(x) A plx) D a5 (x)]
A [qz(x)A P(x) D qga)]
A Lay(x) A ~p(x) 2 F]
A [qs(") A ~p(x) D q (f0x))]

A [q3(x) A plx)DF 1},

By changing the matrix of wAP* to conjuctive normal form, and
replacing y by b (where b is a new individual variable), we obtain

W!

APx*
x)| I plo, v q (a)]
Al ~p(b) V a5(b)]
A [~q|(x) vV oplx) v qz(f(x))]
A [~q|(x) Ve~pix) V qs(x)]
A [~y (0 V) Vogga)]

>

[~q2(x) vV pix)]

35

A fea) Voplx) v a5 (f(x))]

A [~q3(x) V ~p () 1.
H

Clearly, wA'P* is satisfiable if and only if wAP* is satisfiable.

We are going to prove that WAP* is unsatisfiable by using the
resolution principle, We assume that the reader is familiar with this
technique (see Robinson [1965]).

The list of clauses is:

l. p(b), q|(a)

2. ~p(b), q3(b)

3. ~q|(x), p(x), qz(f(x))

4, ~q|(x), ~p(x), q3(x)

5. ~q2(x), ~p(x), q3(a)

6. ~q2(><), p{x)

7. ~q3(x), pix), q3(f(x))

8. ~q3(x), ~p(x).

Then by resolving we obtain

3. ~p(b) by 2 & 8 (with x = b)
10, ql(a) by | &9

i1, ~q|(x), qz(f(x)), q3(x) by 34 4

12, qz(f(a)). qs(a) by 10 & Il (with x = 2)

13, -q2(><), q3(a) by 5 & 6

36

4. gyla) by 12 & 13 (with x = f(a))
I15. ~q3(x), qs(f(x)) by 74 8

16. q3(f(a)) by 14 & I5 (with x = a)
17. pla), qz(f(a)) by 3 (with x = a) & 10

18. p(a), p(f(a)) by 6 (with x = f(a)) & |7
19. -q3(a), p(f(a)) by 8 (with x = a) & I8
20, ~q3(a), ~qs(f(a)) by 8 (with x = f(a)) & 19
21, ~a5(2) by 16 & 20

22, [by 14 & 2I.

So, by resolving, we inferred the empty clause [:7, which implies
'
that wAP* is unsatisfiable, i.e., wAP* is unsatisfiable. Therefore it

follows, by Theorem 2, that AP* terminates.

3.4 The Termination Problem of Abstract Programs

It is & well-known result that the termination problem of

abstract programs is undecidable (see Luckham, Park and Paterson

[1967]). That is, there can be no algorithm which takes as input
any abstract program AP and in all cases stops with a decision as to

whether the abstract program terminates or not.

But,

Corollary |: The termination problem of abstract programs is

semi-decidable.

That is, there are algorithms (called semi-decision procedures),

which take as input any abstract program AP, and

I. 1f AP terminates, the algorithm will stop and say so;

2. 1f AP does not terminate, the algorithm will never stop.

Since the validity problem of the predicate calculus is semi=-
decidable, Corollary | follows directly by Theorem 2.

Moreover, any known semi-decision procedure for solving the
validity problem of the predicate calculus can be used, together with
Algorithm 1, as a semi-decision procedure for solving the termination
problem of abstract programs. in fact, in sec. 3.3, we have used the

resolution principle, which is a semi-decision procedure for solving

the validity problem of the predicate calculus, to prove the

termination of the abstract program AP* of sec. 2.1.

Though the termination problem of abstract programs is
undecidable, there nevertheless exist subclasses of abstract programs

for which the termination problem is decidable.

Corol lary 2

Ihe termination problem for the following classes is dacidable:

[APIAP is an abstract program without function

| Cl =
constants f?, n>t},

2 02 = lAPIAP is an abstract program which has only one program
variable x (i.e., n = 1), and all the occurrences of
function constants in AP are in terms of the form f?
or 00},

3. C3 = {AP‘AP is an abstract program which has only two program

variables X, and Xy (i.e., n=2), and all the
occurrences of function constants in AP are in terms

of the form f? or f?(xl,xz)}.

Proof

For each i, | € i < 3, the decidability of the termination problem
for the class Ci follows, by using Theorem 2, from the decidability of

the validity problem for the class wi (see sec. 1.2),

39

Let us prove this assertion for | = 2, i.e., we shall prove the

decidability of the termination problem for the class 02 by using
Theorem 2 and the decidability of the validity problem for the class

Wz, where

wz = {wlw is a wff in prenex normal form, without function

constants, and with prefix of the form ¥...Ma¥...v}.

The proof of the assertion for the other classes is simi lar,

Let AP be any member of the class C2, i.e., AP is an abstract
program which has only one program variable x (i.e., n=1), and all
the occurrences of function constants in AP are in ferm; of the form
£9,49,...,£2 and f:(x),fl(x),...,fitx) (k,4 > 0),

Then wAP Is of the form (x)M, where M is a quantifier free wff

and all the occurrences of function constants in M are in terms of the

o (0 o | | |
form f|,f2,...,fk and fl(x),fz(x),...,f‘(x).

1]

Let wAP be the wff (le)...(Sw()(x)(ﬂzl)...(ﬂz‘)M', where M
is the result of substituting wi, i =1,2,...,k, for each occurrence
of f? in M and substituting z,, i =1,2,...,4, for each occurrence of

| . . " .
fi(x) inM, i.e., M' contains no function constants.

] N - .
WAP I's satisfiable if and only If wAP is satisfiable, since W

e ——t—— ot et et e, Sttt aaettets stetar s st

ap 1S

H 1
the functional form of wAP'

40

1
Let Wip be the wff ("l)-'-(wk)<ZX)(Z|)---(z"ﬁvM'], e, Wi IS

H] " H H)
Jjust ~MAP‘ Clearly, wAP is valid if and only if wAP is unsatisfiable.

Since WRP is in prenex normal form, without function constants,
and with prefix of the form ¥...¥d¥...¥, it follows that NXP is &

member of wz. But the validity problem for the class W, is decidable,

2
so it is decidable whether wxp is valid or not.

Since by the previous assertions WXP is valid if and only if AP
terminates, this implies that it is decidable whether AP terminates or

not,

g.e.d.

Known decision procedures for solving the validity problem for
the class wi can be used, together with Algorithm |, as a decision
procedure for solving the termination problem for the class Cl' For
example, we can use Friedman's semi-decision procedure for the
predicate calculus (see Friedman [1963]), which is » decision procedure

for the classes W WZ, and W

1’ 3"
Note that the abstract program AP* of sec. 2.| belongs to the

class CZ'

41

CHAPTER 4: EQUIVALENCE OF PROGRAMS AND ABSTRACT PROGRAMS

4.1 The Algorithm ES Construct wAP.AP'

Definition 3
Two abstract progrems AP and AP' are said to be comparable if

I. they have the same set of program variables X = (xl,...,xn),
and

0

2. they have the same set of input variables V = (yl,...,ym).

In this section we shall first describe an aigorithm to construct
from two given comparable abstract programs AP and AP', a wff wAP AP!
14
(the wff of AP and AP'). In section 4.3 we shall state resuits about

N 1
the relation between AP, AP' and wAP,AP"

Algorithm 2

Let AP and AP' be any two compai able abstract programs. We shall

construct the wff wAP,AP' in four steps:

lNo1'e that any two abstract programs can be considered as
satistying condition 2, for if the two abstract programs do not have
the same sets of input variables, just add to each program an
appropriate set of dummy input variables.

42

Step |

Associate with every vertex i of AP a predicate variable 9; (we
shal| denote by ay the predicate variable associated with the halt
vertex H of AP], and associate with every vertex v; of AP' a predicate

variable q;, where all the q; and the q; are distinct.

Step 2

Let o = (vi,L,vj) be any arc of AP,

In step | we have associated with the vertex v the predicate
variable ., and with the vertex vj the predicate variable qj.

We shall define the wff wa (the wff of the arc o) as

Wyt qi(x) A gy, > qj(fa).

But,

if v, ® S (i.e., v is the start vertex of AP), then replace the
occurrence of q'(;) in W, by T.
Step 3

Let o' = (v;,t,vj) be any arc of AP'.

In step | we have associated with the vertex v; the predicate

variable q;, and with the vertex v3 the predicate variable q}.

We shall define the wff wa. (the wff of the arc @') as

. V(x V(T
wa,. qi(x) A ¢a.3 qj(fa,L

But,

b, if v; =5' (i.e., v; is the start vertex of AP'), then

replace the occurrence of q;(;) inW,byT, and

43

2. if vj = H' (l.e., vj s the halt vertex of AP'), then

replace the occurrence of qj(;;,) in ﬂy, by‘qu(i’.).

Step 4
Let al‘UZ""“’N be the set of all the arcs of AP, and

a;;:é,...,aﬁ be the set of all the arcs of AP'. Then define W

AP,AP!
as
Wap apri COTH, AW A AW AW AW, A...AW,. D
AP,AP a, a, oy o) o, oy
Example
Consider the abstract program AP**:
n
~p(y) A ~p(a
=plyl & pla) (2]
I:pb
where,

a - individual variable,

f - monadic function constant,
P - monadic predicate constant,
Y = input variable,

X =~ program variable.

INofe that the input variables of AP and AP' are free variables
in Wap ap-

44

Using Algorithm 2 we shall construct the wff NAP*,AP"' where AP*

is the abstract program that was presented In sec. 2.1.

9

x + t(x)

N

==piy) A =pia] ¢ x o tlal

gyl A plal

[

45

Wapk apr: 0L [T A ~pty) >q(a)]

[T A pty) > g5y}

[q|(x) A ~pix) 2 q,(fx))]
[qI(x) A plx) D qs(x)]

[qz(x) A pix) D qs(a)]

[qz(x) A ~p(x) DqH(x)]

lag0x) A ~pix) D g5 (f0x))]
[q3(x) A pix) DqH(x)]

[T A~p(y) A~pla) D ~q,(f(a))]
[T A~pty)a p(a)DaqH(a)]
[T A Pty Sn~q,(y)]}

> > > > > > > > 3> >

46

4.2 Equivalence of Programs

Definition 4

Let AP and AP' be any two comparable abstract programs.
Let § be an interpretation that contains assignments for all the
constants that occur in AP or AP'.

Then the programs (AP,3) and (AP',}) are said to be comparable.

Definition 5
Two comparable programs (AP,3) and (AP',3) are said to be

equivalent, if

“;, ;}(D)m, both execution sequences <AP,3,§$ and

3
<AP',3,v> are finite and val <AP,3,y> = val <APLS,¥>.

Theorem 3

Two comparable programs (AP,%) and (AP',3) are squivalent,

if and only if
(wAP,AP"S) is unsatisfiable [or equivalently, vaAP,AP"s) is
validl.

Proof

We shall prove that:
qy, 7:(03)'“, such that |. <AP,3,y> is infinife,
or 2. <AP',3,y> is infinite,
or 3. both <AP,3,y> and <AP',3,y> are finite,

and val <AP,3,¥> # val <AP',3,Y>,

47

it and only If

(WAP AP"S) is satisfiable,
’

(i)=
We have to consider three cases:
I. It the execution sequence <AP,3,§S is infinite, then (WAP,AP"S)
is satisfiable, since the value of (wAP,AP"s'r) is T, whereI' consists

of the following assignments:

(a) ;'assigned to 7,

(b) to each occurrence of q, in W assign the minimal valid
i AP,AP!'

predicate of v for (AP,S,;), and

(¢) to each occurrence of q; in wAP AP assign the minimal valid
’

predicate of v; for (AP',S,?).

The result then follows from the construction of W '
AP,AP

(Algorithm 2). Note that, since <AP,3,;§ is infinite, the minimal

valid predicate of H for (AP,S,;) is F, i.e., by our assignment

q, = F, and therefore ~ay, ET.

2. If the execution sequence <AP',3,§$ is infinite, then (wAP AP"S)
is satisfiable, since the value of (wAP AP"S'F) is T, where I consists
of the following assignments:

(a) ; assigned to ;}

(b) to each occurrence of q, [except qH] in Wio ape @ssign the
’

minimal valid predicate of v; for (AP,S,;),

v . - .
(c) +to each occurrence of g in wAP,AP' assign the minimal valid
predicate of v; for (AP',3,y), and

(d) BT,

Wy

48

The result then follows from the construction of W .
AP,AP
(Algorithm 2). Note that ~ay, m F, and since <AP',3,;> is infinite,

F I's the minimal valid predicate of H' for (AP',y).

3, 1f both the execution sequences <AP,3,§> and <AP',3,‘7> are finite

and val <AP,3,§> # val <AP',3,\7> then (wAP AP"s) is satisflable, since
. ’

the value of WAF‘,AP"S'F) is T, where I’ consists of the following

assignments:

(a) Y assigned to 7,

(b)Y to each occurrence of q; in wAP AP assign the minimal valid
’

predicate of vi for (AP,S,;), and

(c) to each occurrence of qi‘ in wAP AP assign the minimal valid
’

predicate of v" for (AP',S,;).

The result then follows from the construction of W '

AP, AP

(Algorithm 2). Note that we assigned to Yy the minimal valid

predicate 8 of H for (AP,S,-Y-), l.e., 8(x) = T If and only |f
% = val <AP,3,Y—>. Now, since val <AP,3,'7> # val <AP',3,'7>, it follows

that & (val <AP',34>) = F, i.e.,~b (val <AP'J¥>) = T.

(ii) =
\ . ey m
We shall prove that if (wAP,AP"s) is satisfiable wnThY,YG(QJ) '
assigned to 7, and both execution sequences <AP,3,Y—> and <AP',3..Y->

are finite, then val <AP.J¥> # val <AP' 3 ¥>.

I £ (wAP,A

that there exist an assignment I' such that (W5 45.,3,T) is T, where r
’

P,,s) is satisfiable with 37 assigned to -y-, it means

49

consists of the assignuant of ; to _y. and assignments of specified
total predicates 6, and 6; (mapping (Ds)n into {T,F}) for q; and
qi' respectively.

By the construction of wAP,AF" (Algorithm 2), this implies that
each 5, is a valid predicate of the vertex v for (AP,S,;),

especially §, is a valid predicate of the halt vertex H for (AP, ,-),
H Y

and therefore 5H(va| <AP,3,¥>) = T. Moreover, each 6i' is a valid

predicate of the vertex vi‘ for (AP‘,S,;), and ~6H is a valid predicate
of the halt vertex H' for (AP'.S,;), ard therefore ~6H(val <AP',3,¥>) =T,

i.e., b (val <AP',%,¥>) = F.

But since 8, (val <AP,3,¥>) = T, while & (val <AP',3,Y>) = F, it

H
fol lows that val <AP,3,Y> # val <AP',3,Y>.

q.e.d.

50

4.3 Equivalence of Abstract Programs

Definition 6

Two comparable abstract programs AP and AP' are said to be
equivalent if for every interpretation 9 that contains assignments
for all the constants that occur in AP or AP', the programs (AP,3)

and (AP',3) are equivalent.

Theorem 4
Two comparable abstract programs AP and AP' are equivalent,

if and only if

wAP,AP' is unsatisfiable [or equivalently, ~wAP,AP‘ is valid].

Prootf
AP and AP' are equivalent,
if and only if (by Definition 6)
for every interpretation &, the programs (AP,3) and (AP',3) are
equivalent,
if and only if (by Theorem 3)
for every interpretation 3, (wAP,AP"S) unsatisfiable,
if and only if

wAP,AP' is unsatisfiable.

51

Theorem 4 transforms completely the equivalence problem of
abstract programs to an equivalent problem in logic. So, by Theorem 4
we can obtain many results about the equivalence problem of abstract
programs, just by applying well-known results in logic. In the

remainder of this section we shall present several such results.

It is a well~known result that

the equivalence problem of abstract programs is undecidable.

That is, there can be no algorithm which takes as input any two
comparable abstract programs and in all cases stops with a decision
as to whether the abstract programs are equivalent or not.

This resutt follows directly from the undecidability of the
termination problem of abstract programs (see sec. 3.4), since an
abstract program terminates if and only if it is equivalent to

itself.

But, by Theorem 4 it follows that

Corollary 3

the equivalence problem of abstract programs is semi-decidable.

That is, there is an algorithm (called a semi-decision procedure),

which takes as input any two comparable abstract programs, and

I. if they are equivalent, the algorithm will stop and say so,

2. if they are not equivalent, the algorithm will never stop.

52

Since the validity problem of the predicate calculus is semi-
decidable, Corollary 3 follows directly by Theorem 4. Moreover, any
known semi-decision procedure for solving the valldity problem of the
predicate calculus can be used, together with Algorithm 2, as a semi-
decision procedure for solving the equivalence problem of abstract

programs.

Though the equivalence problem of abstract programs is
undecidable, there nevertheless exist subclasses of abstract programs

for which the equivalence problem is decidable.

Corollary 4

The equivalence problem for the following classes is decidable:

I, CI = lAP'AP is an abstract program without function constants
f?, n> 1},

2 C2 = lAPIAP is an abstract program which has only one program
variable x (i.e., n = 1), and all the occurrences of
function constants in AP are in terms of the form
f? or f:(x)],

3 03 = lAPlAP is an abstract program which has only two program

variables X and X, (i.e., n =2), and all the
occurrences of function constants in AP are in terms

of the form f? or ff(xl,xz)}.

53

That is, for each i, | < i £ 3, there is an algorithm which takes
as input any two comparable abstract programs AP, AP'cC', and in all
cases stops with a decision as to whether AP and AP' are equivalent or
not. This follows, by using Theorem 4, from the decidabjlity of the

validity problem for the class wi (sec, I.Z).(')

Most of the results for the termination problem presented in
Chapter 3 are special cases of the results presented in this chapter,
especially corollaries | and 2 follows from corollaries 3 and 4
respectively, since every abstract program AP terminates if and only

if it is equivalent to itself.

lSee the proof of Corollary 2 in cec, 3.4,

n

PAGE

BLANK

CHAPTER 5: TERMINATION OF NON-DETERMINISTIC PROGRAMS
AND NON-DETERMINISTIC ABSTRACT PROGRAMS

5.1 Defipitions

A non-deterministic abstract program G is defined exactly as an

abstract program (see sec. 2.!), but without restriction 4(b), i.e.,
without the restriction that for every vertex v(v # H), the test
predicates on all the arcs leading from v are mutually exclusive.

This implies that the class of all the non-deterministic abstract
programs includes as a proper subclass the class of all the abstract

programs.

The notions of non-deterministic program GP,y) and non-deterministic

interpreted progrem (G_P,a,i) are defined exactly as for abstract

programs (see sections 2.2 and 2.3).

PSR G RIS sy

55

Example
The following diagram represents a non-deterministic abetract

program. We shall later refer to it as GP*:

(8)

where
a - individual constant,
f - monadic function constant,
p - monadic predicate constant,
y = input variable,

X = program variable,

56

Since the test predicates on all the arcs leading from vertex 2
[i.e., ~p{x), p(x), and ~p(x) A p(f(x))], are not mutually exclusive -

GP* is pot an abstract program.

Let §* be the following interpretation of Gf*:

D is I (the domain of the integers),

fi{x) isx+ 1,

p(x) is x = 0, and

ais -2.

Then the non-deterministic program (GP*,%*) can be represented by

the domein D = I and the diagram

LN

57

By essigning the value | to the variable y of @@P*,3%), we obtain

the non-deterministic interpreted program GP*,q%,():

L1}]

In @ non-deterministic interpreted program GP,S,;) there may
exist a vertex v and two distinct arcs o, and o, leading from v, such
that control may reach vertex v with x = §—, Ee (Ch)n, while both

- = |
<pa'(§) = T and q’"’zm = 7.0

'tpa (E) and Py (%) stand for the result of substituting _§ for 7
| 2

in cpal and cpaz respectively.

58

It follows that in general a non-deterministic interpreted

program (GP,S,;) does not define a unique execution sequence

41P,3,.y_> as for interpreted programs (see sec. 2.3), but g set

j@,ﬂ,_ﬁt of execution sequences.
Example

The interpreted program (GP*,3*,1) defines two execution

sequences:

,1,-2) (3,2,-1) (7,H,-1), and

a,t,-2) (3,2,-1) (5,3,-2) (8,3,-1) (8,3,0) (9,H,0).

Let (GP,S,;) be 2 non-deterministic interpreted program, and

<GP,3,v> be any fixed execution sequence of (<GP,3,v>}.

Let veV be any vertex of GP, and & be a specified total predicate

trom {D)" into {T,F}.

Then,

6 is called a valid predicate of v for <GP,§},—£,
if

vE, EC(Ds)n: it for some LeL, there exists a triple of the

form (£,v,€) in <GP,3,v>, then 6(€) = T.
8 is called the minimal valid predicete of v for GP,3,v>

it

ve, Ec(os)": §(f) = T it and only it for some LeL, there

exists a triple of the form (l.,v,E) in le,S,;>.

59

5.2 Meak Termination
Let GP be any abstract program, and !hE be the wff obtalned from

GP by applying Algorithm | (see sec. 3.1).

finition 7

A non-deterministic program Gr,3) Is said to terminate weakly, if

V;, ;c(Ds)m, there exists at least one finite execution sequence

in {<GP,3,v>}.

The proof of the fol lowing theorem Is similar to the proof of

Theorem | in sec. 3.2.

Theorem 5
The non-deterministic program GP,%) terminates weakly,
if and only If
(Vhp,S) I's unsatisfiable [or equivaiently, Hgp,Y) 1s valid].

Definition 8

A non-deterministic abstract program GP is said o terminate

weakly if

tor every interpretation 3, the program (GP,J) terminates weakly.

The proof of the fo!lowing theorem follows from Theorem 5 and

Definition 8 (see the proof of Theorem 2 in sec. 3.3).

Jheorem 6

The non-deterministic abstract program GP terminates weakly,
it and only if
Vhp is unsatisfiable [or equivalently, %P is valid].

6l

5.3 The Algorithm to Construct \lh_l?.

In this section we shall describe an algorithm to construct from
a given abstract program GP a wff "hp In the next section we shall

state results about the relation between Gf and ltp

Algorithm 3

Let GP be anry non~deterministic abstract program with program
variables x = (X)Xps-++sX), N 2 1, and input variables y = (Y $¥gre eV

m > 0. We shall construct the wff “hp in three steps:

Step |

Associate with every vertex vi of GP a predicate variable ;.

where the ql's are distinct n-adic predicate variables.

Step 2

Let v, be any vertex of GP (vi £ H).

i
Let a0 ,...,%, be the set of a!l the arcs leading from v to

N
vi ,viz,...,le respectively. In step | we have associated with the
vertex vi the predicate variable q and with the vertex Vi | < jZ2N,
J

the predicate variable q; -

J

We shall define the wff wv (the wff of the vertex VI) as
i
_ N
WVI: ql(x) po Z

9. Aqg, (1)]
j aj lj o,

| J

But,

62

Ifv, =5 (ie., v is the start vertex of GP), then replace

the occurrence of ql(;) in wv by T, and
i

is the halt vertex of GP), replace the

2. Ifv, =H(l.e., Vv
IJ. lj
occurrence of q; (faJ) in wv‘ by F.
Step 3

Let Vi rVgreeeaVy be the set of all the vertices of G (except H),

then define uhp as

- o
: W AW A LLLAW L
“hp v vy M

INote that the input variables Y are free variables in W,

63

Example
The wff "hP' of the non-deterministic abstract program GP* of
sec. 5.1 will be constructed as follows:

Combining steps | and 2 we obtain

W T D ilp Aqa]v (pty) A aytn)]}

Wi g0 3 {0 A a (tx))] v PO A 93001}

W,: g,(x) 2 LI~ 0) A pLEGX)) A 03(5)] v [p(x) A qs(a)] vV [~p(x) AF]}
Wyt ag(x) D e A ag(fx] v lp(x) AFl}.

Then by step 3 it follows that

lch" is (x)[HS AW A W, A HS]'

5.4 Strong Termination of !grl-oofermlnlsﬂc Programs

Definitiond

A non-deterministic program GR,y) is said to terminate strongly
it

V;, -Y-C(Ds)m, all the execution sequences in [<ﬁP,3,-v'>} are finite,
Jheorem 7

The non-deterministic program (GP,3) terminates strongly
if and only if

(%.3) is unsatisfiable [or equivalently, (-Ilhp,s) is valid].

Proot
We shall prove that (G{,3) does not terminate strongly it and
only If (uhp,s) is satisfiable.
1. (Gp,y) does not terminate strongly *® (\h,,ﬂ) is satistiable.
It (GR,y) does not terminate strongly, there exists a

¥, yelD)", and an execution sequence @,3.;>, @,3,}0[@,3.}],

which IE infinlte,
Let us assign to each predicate variable 9 in uhp' the minimal
valid predicate of the vertex vi for the execution sequence <ﬁP.3,‘v->.
Note that since the execution sequence <ﬁP,3._v'> is infinite, i.e.,
control never reaches the halt vertex, it follows that the predicate F
i's the minimal valid predicate ot the vertex H for <4P,9,7>-

Let I' consists of the above assignments for the q 's and with -v'

assigned to 7 Following the construction of lhp (see sec. 5.3,

65

especially note the V connective used in step 2), it Is clear that the
value of %,3,1') isT, i.e., ('lhp,S) is satisfiable. This completes

the proof in one direction.

2. %,3) is satisfiable » GP,3) does not terminate strongly.

't %,3) Is satisfiable, there exist an assignment I' for
%,3) such that the value (llhp,s,r') is T. T consists of assignments
of specified total predicates 61, mapp ing (Ds)" into {T,F}, tor the
predicate variables Q. and an assignment 7, 73 (QJ)"', for the free
veriables y.

By the construction of lhp, this implies that each 6' is a valid
predicate of the vertex v' for some execution sequence 41(’.3.;»
@.3.;”[@:3'}], and therefore thet F is 8 valid predicate of the
hatt vertex for @.3.%.

This implies that the execution sequence @,8,7> is infinite
(i.e., execution does not reach the halt vertex). So, @GP,3) does not
terminate strongly.

q.e.d,

b |

66

The above result can be used to prove the convergence of

recursively defined functions.

Let us consider, for example, the functions Fl(x) and Fz(x)

defined recursively by the following Algol conditional statements:

Fy = jf x = O then |
else it x> O thep 2 + F'(x-l)
else FZ(-x) * Fl(x+l);

Fy(x) =]t x = O then 2
g_]_a_ux<0_thgn3'F2(x+2) +7
alse (F (10 2.

Suppose that we want to prove that for every integer x, the
recursive process of computing F'(x) and Fz(x) terminates. We can use
Theorem 7, since:

for every integer x, the recursive process for computing Fl(x)

and Fz(x) terminates,
it and only if

the following non-deterministic program (over I) terminates

strongly.

67

X +x = | X +x + |

(Consider vertex | as representing the start of the computation of

Fltx) and vertex 2 as representing the start of the computation of
Fatx).])

5.5 Strong Termination of Non-Deterministic Abstract Programs

Definjtion 10
A non-deterministic abstract program GP is said to terminate
strongly, if for every interpretation J, the non-deterministic progrem

Gpr,3) terminates strongly.

The following theorem follows from Theorem 7 and Definition 10,

Jheorem 8

A non-deterministic abstract program GP terminates strongly
it and only it

"hP is unsatisfiable [or equivalently, *th‘, Is valid].

froof

GP terminates strongly,
if and only if (follows by Definition 10)
for every interpretation 3, the non-deterministic program Ge,
terminates strongly,
it and only if (follows by Theorem 7)
for every interpretation RY (IIhP,S) is unsatistiable,
if and only if

ubp is unsatisfiable.

- L - i B A A A R 3 8

€9

Theorem 8 is & generallzation of Theorem 2 of sec. 3.3. Moreover,
all the results presented in sec. 3.4 (Corollaries | and 2) can also
be generalized for the strong termination of non-deterministic abstract

programs.

R ey 1 iy na e r -

70

REFERENCES

Ackerman [1954]
Ackermann, W., Solvable Cases of the Decision Problem, North-Holland
Publishing Company, Amsterdam (1954),

Church [1956]
Church, A., Introduction to Mathematical Logic, volume |,

Princeton University Press, Princeton, New Jersey (1956).
Davis and Putnem [1960]
Davis, M. and H. Putnam, "A Computing Procedure for Quantification
Theory," J. ACM 1 (3), 201-215 (July, 1960).
Friedman [1963]
Friedman, J., "A Semi-Decision Procedure for the Functional
Calculus," J, ACM 10 (1), 1-24 (Januery, 1963).
Kleene [1950]
Kleene, S. C., lntroduction to Mathematics, D. Van Nostrand
Company, Inc., Princeton, New Jersey (1950).
Kleene [1967)

Kleens, S. C., Mathematical Logic, John Wiley & Sons, Inc.,

New York (1967).

Luckham, Park and Paterson [1967]
Luckham, D. C., D. M. R, Park and M. S. Paterson, "On Formalised
Computer Programs," Prcgramming Research Group, Oxford University

(August, 1967).

71

Mendelson [1964]
Mendelson, E., Introduction to Mathematical Logic, D. Van Nostrand

Company, Inc., Princeton, New Jersey (1964).

Robinson [i965)
Robinson, 4. A., "A Machine-Oriented Logic Based on the Resolution

Principle," J. ACM 12 (1), 2341 (January, 1965).

ey

et

72

PART 11

|ntroduction

Since Part | and Part 11 of the thesis are Intanded to be self-
contained units, the background information necessary to understand

Part |1 Is entirely contained in this part,

An intecpreted graph IG consists of a finite directed graph, and
|. With each vertex v, there is associated a domaln Dv' and
2. With each arc a leading from vertex v to vertex v', there are
associated a total test predicate P, (Dv + \T,F}, and a total

function fa (Dv A Pa +Dv,).

Let us represent by a state vector x the current values of the
variables during an execution of an interpreted graph IG, An
exscution sequence of IG may start from any vertex v with any
initial state vector xocbv. The domain Dv Is the set of all
possible state vectors at vertex v, Pa represents the condition that
arc a may be entered from its origin, and fa represents the operation
of changing the state vector x to fa(X) when control moves along
arc a. In general, the flow of control through an Interpreted graph
is a non~-deterministic process, l.e., more than one arc may be
entered from a given vertex with a given state vector. Execution
will halt on vertex v, with state vector x, if and only 1f no predicate

on any arc leading from v Is true for x,

73

An Interpreted graph terminates if and only If all the execution

sequences of IG terminate.

In this part, two necessary and sufficlent conditions for the
termination of interpreted graphs are described. The first condition
(Theorem |) Is defined by means of well-ordered sets and the properties
of the cycles of the graph, while the second condition (Theorem 2) is
defined by means of the strongly connected components of the graph.

Floyd [1967] has discussed the use of well-ordered sets for
proving the termination of programs,

These results have applications in proving termination of various
classes of algorithms, such as deterministic and non=deterministic

programs and recursively defined functions.,

74

CHAPTER |: MATHEMATICAL BACKGROUND

I.1 Hell-Qrdered Sets
A pair (S, ») Is called an grdered set, provided that S is a set
and > Is a 1 .lation defined for every pair of distinct elements a
and b of S (and only between distinct elements), and satisfles the
following two conditions:
l. Ifa#b, then efther a > b or b > a;

2. |fa>band b>c, then a » c (l.8,, the relation is

transitive).

A well-ordered set W Is an ordered set (S, ») in which every
non-empty subset has a first element; equivalently, In which every

decreasing sequence of elements a > b > ¢ ... has only finltely many

elements.

Examples:

l. I'+ - the set of all non-negative integers well-ordered by

its natural order, f.e., {0, I, 2, 3, «.a}s

2. In+ - the set of all n=tuples of non-negative integers for
some fixed n, n > |, well-ordered by the usual lexicographlic
order, i.e,,

(al,az,....an) > (bl'bz"”'bn)

if and only if
a, = bl' a, = b2'”"ak-l = bk-l' a, > bk for some k, | g k g n.

75

3. x.* = the set of all intinite monotone non=-increasing sequences

of non-negative Integers with finitely many non-zero
)

enti|tles well-ordered by the usual lexicographic order,
l.e,,

(a',az,as,...) > (bI'DZ'bS'...)
it and only |f

8, *b, 8, = b‘,,...,akq "o o> b, for some k, I <k,

1.2 Dlrocfedm
A directed graph 6 ‘EIEL"' for short) Is an ordered triple <v,L,A>
where:
l V Is & non-empty set of elements called the yectices of G;
2. L Is a non=empty set of elements called the labels of G; and
3. A is a set of ordered triples (v,4,v'), where veV, v'eV and
4L, These triples are called the args of G.

If Vand L are finlte sets, G is called a finite directed graph.

'I.e., the Infinite sequence (al,az,as,...) Is In the set if
and only 1f 3¢, | £ 4, s.t.

Yi(l < &): 3, Is & positive integer and 8, 2 a and

Viti 2 4): a, =0,

i
For exemple, (5,5,4,3,3,3,5,I,0,0,...) is an element in this set,

76

Let a = (v,2,v") be an arc of a directed graph, Then we define:
I v = the nitial vertex of the arc,
2, 4 - the jabe] of the arc,
3. v' - the terminal yertex of the arc.

And we shall say that the arc a deads fram the vertex v 1g the

vertex v',

Let v be a vertex of a directed graph. Then,
t. The number (finite or Intinite) of all arcs aeA, s.t. v Is

the initjal vertex of a, Is called the out-degree of v,

2, The number (finite or infinite) of all arcs aeA, s.t. v is

the terminal vertex of 3, is called the Jn-degree of v,

A tinlte path of a graph G (path, for short) Is a finite sequence
of n, n> 1!, arcs of G

(v 4 v,), (v 2 Ve)y eee v, , 2 v)
l" i" Iz' lz' lz‘ l3 ’ In In’ 'n+l

n n+l

4])]
i i i
{notation: 2 -—|—§ vi ——z—-bvl ver vy — vi 3.
I 2 3

s.t. the terminz| vertex of each arc coincides with the initial vertex
of the succeeding arc,
We say that;

l. The path meets the vertices vll, v'z'"”v'ml' and these

vertices are on the path,

77

2, The path joins the vertices vI| and i I.
n+

3. The path is elementary If the vertices v'l. i

,oo-'Vl

2 n+l

are distinct,

4, The path is a cycle 1f the vertex vi coincides with the
|

vertex Vi o further it is an elementary cycle if in
n+l

addition the vertices Vioe vi ,...,vl are distinct,
2

! n

An infinite path of a graph G Is an Infinite sequence of arcs of
G s.t. the terminal vertex of each arc coincldes with the initlal
vertex of the succeeding arc, A subpath of an infinite path Is a
consecutive subsequence (finlte or infinite) of its arcs,

We define a cut set of a graph G as a set of vertices having the
property that every cycle meets at least one vertex of the set.

A graph G Is said to be strongly connected If there is a path

Joining any ordered palr of distinct vertices of G.
Let G be a graph <V,L,A>. We define a subgraph Gl = <V|,L,A'>
of G as the triple consisting of VI, L and A|, where Vl Is & subset

=AA(V xLxV),

| I |
A subgraph Gl = <V|,L,A|> of G Is said to be a strongly connected

of V and A| Is defined by A

component of G if,

l. G' Is strongly connected, and
2. For all subsets V2 cVs,t, v, ¢ Vl and V2 =] V', the subgraph

G2 = <V2,L,A2> is not strongly connected.

78

A tree T = <V,L,A,r> is a directed graph <V,L,A> with a
distinguished root reV, s.t. for every veV (v # r), there is 3t |east
one path from r to v,

We shall use the tollowing version of K8nig's Infinity Lemma:

A tree with no infinite paths and with finite out-degree for

every vertex - is finite.

BLANK PAGE

- » . aones 4.0 P £
B & 0 B L 2ot SO SO MV M NN e 207

» o

79

CHAPTER 2: DEFINITIONS

An interpreted graph IG consists of a finite directed graph
<V,L,A>, and

I, With each vertex veV, there Is associated a domain Dv' and

2, With each arc a = (v,4,v")¢A, there is associated a total

test predjcate Fs (Dv + {T,F}), and a total functjon
f (D AP D),
a v a v

Let (V(O),x(O) be an arbitrary vector of an

) ¢ VxD
v(o)

interpreted graph IG.

An (M(o)lx(o)) - executjon-sequence of IG Is a (finite or

infinlte) sequence of the form

(o)) (2)
(v(°),x(°)) 4 (v('),x(l)) L (v(Z),x(Z))] cee,
where,
1. v(j)ev, t(J)cL and x(j)co o for all j >0,
v

. . (Jj) . .
2, It (v(J),x(J)) !——» (v(J+'),x(J+I)) is In the sequence, then
there exists an arc a = (v(j),l(J),v(J+l)) 2
Gy G+

JeA s.t. Pax

True and f_x
a

3. If the sequence is finite and the last vector in the sequence

(n) (n),

is (v ,x(n)), then for all arcs aeA leading from v

Pax(") = False,

80

By the detinition of Interpreted graphs, there may exist In an
Interpreted graph IG: & vertex veV, a state vector chv, end two
distinct ercs a,beA laading from v = s.t. both Pax = True and

Pbx = True, 1.e., the predicates on all arcs leading from the

vertex v are not necessarily mutually exclusive, It follows, that

for the fixed vector (v(°),x(°)) eV xD (o)’ there may exist many
v

distinct (v(°),x(°)) - executlion sequences of IG, For this reason,

the execution process of an Interpreted graph, starting with the

vector (v(°),x(°)), |s described by a tree.

The gxecyticn tree I(v(O) .5(0)) Is the tree <V',L,A!, (v(°),x(°))>,

where,
|. The set of vertices V! |s the set of all vectors (v,x) ¢ V x Dv

s.t. there exists an (v(O),x(O)) - executlon sequence of IG

that contains the vector (v,x).

2. L is +he set of labels of IG.

3. The set of arcs A' Is the set of all triples ((v,x),24,(v',y))
e V! x L x V! s,t, there exists an (v(o),x(O)) - execution
sequence of IG that contains (v,x) 4 tvl,y).

4, (v(°),x(°))cv' is the poot-vertex of the tree.

81

Examole
Oonsider the interpreted graph IC*

x=1 {2 mwd

(where 1 Is the set of the integers),

There are three (l,-4) - execution sequences in IG*, i.e.,

three executlon sequences that start from the vertex | with x = =4,

(-4 2@2,-2) 32,0,
D (,=8) > 2,8 % (,-3 2 @,-0 3@n 40,0, and
i U >@eta-n32enia~-a2ea4a,-n03>an 4 a,0.

The execution tree T(!,-4) of I is:

82

Ll -4

“r-/" ‘\11.
(2,41 t ;1“
Ll 2,09
ﬁ‘f/'l
:I,-II
31 L=k
(2,3
4
=11

b

e anie oo

83

CHAPTER 3: TERMINATION OF INTERPRETED GRAPHS

3.1 Termination of interpreted Graphs (Theorem D

Definltion
An interpreted graph Is said to terminate if all its execution

sequences are flnl'l'e(h .

Notatjons
Let a = (°I'°2""'°q)' where 1:|‘j = (v(j),l,("),v(””)c/\ for
| < Jj <49, be any path of an Interpreted graph. Then let

I, fax stand for faq(...(faz(falx))...), and

2, Pax stand for

chv“) A Pa X A Pa (fa x) A Pa

(1“!l (fa X)) A eee
! 2 3 "2

AP (f Couo(f_ (f
a_a a, @

o fagy X |X))"'))Afdx‘ov(0+|i'

Lemma

1f an interpreted graph IG terminates,

then there exists for every vertex veV a total function Fv
which maps Dv into I|+, such that for every arc a = tv,4,v") of IG and
for every x s.t. Pax = True:

Fv(x) > Fv.(fa(x)).

II.e., ¥(v,x), (v,x)eV x Dv, all the (v,x) = execution sequences
are finite.

84

Proof

Assuming that IG terminates, we have to specify Fv(x) for arbitrary
veV and chv. :

Since IG terminates, we know that the execution tree T(v,x) has
no infinite paths, Moreover, since every vertex of T(v,x) has a
tinite out-degree it follows by K;nlg's Lemma that T(v,x) is finite,
f.e., has finitely many vertices.

So, let Fv(x) be the number of vertices in T(v,x).

Now, it Is easy to verify that for this choice of FV the condition
is satisfied.

q.e.d,

Theorem |
An Interpreted graph IG terminates if and only if there exist:
l. A cut set V* of the vertices V of IG, and
2. For every vertex veV% a well-ordered set wv = (Sv, >v) and

a total function Fv which maps DV into Sv'

such that,

3. For every cycle o of IG:

85

((2) Cih fa=D (@)
VDA @ a7) e g S £

(4D

(where v' ' ‘eV* and v(k) # v(') tor all | < k £ q), and for

every x s.t, ﬁyx = True:

F (x) » Fv(l)(fax).

v(I) v(l)

Proof

® Necessary condition for termination.

Follows directly from the lemma (with W* = vV and wv = Il+ for
every v, vev).

« Sufficient condition for termination.

Proof by contradiction.
Let us assume that IG does not terminate, i.e., there exists an

infinite execution sequence y in IG,

90y a0

— (v ,X) =— (v

(2)
(2) K (2)y 4

,x 2y e

y: (v(°),x(°))

Let y' be the infinite path

(o)) (2)
', v(O) 4 v(l) L V(@) 4

v

Since IG, by definition, consists of a finite directed graph,

and since y' is an infinite sequence -~ it follows, that there exists

at least one elementary cycle 8 in IG, that occurs (as a subpath)

infinitely many times in y'.

86

Since W is a cut set, it follows that there exists a vertex
v¥eV* that is on B. This implles that v* must occur Infinitely many
times invy'.

(n,) (n,)) {(n,)
Let v ' R 2 ,V 3 yeoo (0L nj <n,

jH for j > 1), be the

Infinite sequence of all occurrences of the vertex v* in y'.

Therefore, the infinite execution sequence y can be written as

(o)
y: (v(O),x(O)) i——* e (v ! »X !) L .
(n,) (n;)
(n,) (n,) 2 (n)) (ny 3
(v 2 ,X 2) i———»... (v 3 ,X 3) £—~—*.
Then, by condition (3) it follows that
("I) (nz) (n3)
Fu(x V> Falx Y > Foalx) >

i.e., there is an infinite decreasing sequence in W But this

e

contradicts the fact that wv* is a well-ordered set.

q.e.d,

The following corollaries follow directly from the lemma and

Theorem |.

87

Corollarz |

An interpreted graph IG, which has a vertex v* common to all
its (elementary) cycles, terminates
it ond only jt
there exist & well-ordered set W = (S, ») and a total function F

which maps Dv, into S, such that for every elementary cycle

a: v** .. * v* and for every x s.t. Pax = True:

F(x) » F(f (x)).
o

Corollarz 2

An interpreted graph IG terminates
it and only it
there exist:
I. A cut set W of the vertices V of IG,
2. A well-ordered set W = (S, »), and
2. For every vertex veV*, a total function Fv that maps Dv
into S,
such that
4. For every elementary path o of IG:

(2)
4 (2) 4

— —

‘(q-l)

v(I) (3) . v(q-l) v(q)

twhere v, V(D evw ang v gwr for all j, 1< j<a,

88

and for every x s.t. Pa(x) = True:

F Tt (fa(x)).

(x) > F
v v(q)

3.2 Termination of Interpreted Graphs (Theorem 2)

Let IG be an interpreted graph constructed from the finite
directed graph G.

Then a strongly connected component IG!' of IG consists of a

strongly connected component G' = <V',L,A'> of G, and in addition,
I. With each vertex veV', there is associated the domain Dv

of IG, and

2. With each arc 3¢A', there are associated the test~predicate

Pa and the function fa of IG.

Theorem 2
An interpreted graph IG terminates

4! and only it

all its strongly connected components terminate.

Prootf

= Necessary Condition for Termination

Follows directly from the detinition of termination of

interpreted graphs,

89

e Sufficient Condition for Jermination
Proot by Contradiction.

Let's assume that IG does not terminate, i.e., there exists an

infinite execution sequence y in IG,
(o) () (2)
y: (v(o)'x(o)) 4 (v“",x“))) 3 (v(Z),x(Z)) /] i

Let y' be the infinite path

(o) tn (2)
v v(o)! v(I)[v(2)j

Since 1G, by definition, consists of a tinite directed graph
G - it follows that 1G contains finitely many vertices. $So clearly,

there are only finlfelz many vertices of G that meet Y' only & finite
(nl) (n2) (n)
number of times. Let v Y RAY) 9 (0 < nJ.< "J'+I for

< j< q), be the tist of their occurrences invy"',

It tollows that all the vertices v"j) (j> nq) of y', are in
some strongly connected component G' of G.

This implies that there exists a strongly connected component

IG' of 1G, s.t. the infinijte subsequence of Y :

(

(an) (an) f] (nq«&?) (nq¢2) 1

(v » X) ——— (v , X) —— .,

an)

is an infinite execution sequence ot IG', i.e., IG' does not terminate.
Contradiction.

q.e,d,

BLANK PAGE

90

CHAPTER 4: APPLICATIONS

The results of Chapter 3 can be used for proving termination of
various classes of algorithms. In this section we shall illustrate
the use of those results for proving termination of:

I. Programs, and

2. Recursively defined functions.

In the first example, we shall use the notion of valid
interpretation. Roughly speaking, a valid interpretation of a flow-
chart is a mapping of its test-boxes to propositions, such that, if
the test-box B is mapped to the proposition q, and if the flow of
control through the flowchart can reach the test-box B with € as the

value of the state vector, then q(§) = True (see Floyd [1967]).

4,] Example |:
Consider the program (Figure |) for evaluating a determinant

Iaijl of order n, n> |, by Gausian elimination. Where,

D - real variable,
(aiJ.)I <i,j<n ° real array,

i,j.K - integer variables,
n - integer constant.

[We consider the division operator uver the real domain as a

total function, by interpreting, for example, % as ZIO for every

real r.}

9l

D «D.a

kk no

i *k+1

k «k + |

J +n il

Jo+i=1 J=kt

92

e

Figure 2

-3 ----n positive integer
k « |
(I gkgnA
— Vandadialia il q,
B| ’p’ (k,n Integers)
‘ k = n? yos
no
| - k + 1]
8,
/_J Usk<n=10
= {=n+ Q- - - - - - = - Qy¢ ARgign+)
7 A (i,k,n intagers)
no
J - n ‘ L I + '
4
(lskgn=1)
8 A2gign)
-1 q3:
A (ktl € j < n+l)
A U,j,k,n integers)
no

93

(! S kgn)

- - - - Dlz {
Alk,n integers)

(h,J,k) « (1, i,ke)) k £n

i=n+ | Grjok) = (ktl, j,k)

- ---0D,:

i ARsign+ D

{ Hgkgn=-1)
A(l,k,n integers)

C(,J,k) « (1+1,],k) P dn+ |

j=k (1,j,k) + (i,n,k)
(Ilgkgn=1)
- - - . AM2g T gn)
N D5:)
AMkg jgn)
A(l,j,k,n integers)
(L, J,k) = (1, j=1,k) itk

Flgure 3

94

We want to show that the program terminates for every positive

infeger n.

Since neither D nor any aij occurs in a test-box or affect the
value of any variable that occurs in a test-box, it is clear that by

erasing the following three assignment boxes:

0+ 2, '
D « D-akk , and
a,
—ik
8, . -« - . .y
1y ij L kj

we do not change the termination properties of the program, In other
words,

For every integer n, the original program (Figure 1) terminates

if and only if the reduced program (Figure 2) terminates.

One can verify easily that the set of predicates attached to the
test-boxes of the flowchart of Figure 2 - considering the initial

predicate '"n positive integer" - is a valid interpretation.

Let's construct now, from the reduced program (Figure 2), the
appropriate interpreted graph (Figure 3), s.t. each vertex i,
I € i <3, of Figure 3 corresponds to the test-box Bi of Figure 2,

and its domain 0i is exactly the valid interpretation q; of Figure 2.

95

Note that we have used theorem 2 here, by considering only the
strongly connected component of our graph.
It is clear that,

It the interpreted graph (Figure 3) terminates, then the

reduced program (Figure 2) terminates for every positive integer n.

Now, use corollary 2, where
V¢ = 2,3} is the cut set,

W = 13+ is the well-ordered set,

Fz(i,j,k) (n=l-k, n+l-i, n+l) is the mapping of 02 into W, and

F3(i,j,k)

(n=-1-k, n+l=i,j) is the mapping of 03 into W,
Note that when control moves:

(i) along the path ba, the value of k is increased by |

(i.e., the value of n-1-k is decreased by 1),

(1i) along the arc d, the value of k is not changed while the value
of i is increased by | (i.e., the value of n+l-i is decreased

by 1),

(iii) along the arc c, the values of k and i are not changed while

J Is assigned the value n, and

(iv) along the arc e, the values of k and i are not changed while

the value of j i< decreased by .

Therefore it follows, by Corollary 2, that

The interpreted graph (Figure 3) terminates.

96

This implies that our Gaussian elimination program (Figure |)

terminates for every positive integer n.

4,2 Example 2:
Consider the function gcd(x,y) (McCarthy [1960]). gcd(x,y)

computes the greatest common divisor of x and y (where x and y are
positive integers), and is defined recursively using the Euclidean

Algorithm by
gedix,y) = [x >y + gedly,x);
rem(y,x) = 0 » x;

T + gcd(rem(y,x),x)],

where rem(u,v) is the remainder of %.

The Algol meaning of this definition is:

gcd(x,y) = if x >y then gcd(y,x)

else if rem(y,x) = O then x

else gcd(rem(y,x),x).

We want to show that for every pair (x,y) of positive integers,

the recursive process for computing gci(x,y) always terminates.

97

(x,y) + (rem(y,x),x) (x,y) « (y,x)

(x % y) A (rem(y,x) # 0)

_ (positive positive
D linfegers] x {infegers}
Figure 4
By considering vertex | in Figure 4 as representing the start

of the computation of gcd, for each pair (x,y), it tollows that:
For every pair of positive integers (x,y), the recursive
process for computing gcd(x,y) terminates,
if and only if
the interpreted graph (Figure 4) terminates.
Since this interpreted graph consists only of one vertex, we
shall use Corollary | to show its termination.

So, let W = I'+ be the well-ordered set, and FOx,y) = rem(y,x)

the mapping of D into W,

98

Since the graph contains two elementary cycles, a and B, we have

to show:

True » F(x,y) > F(y,x), and

I. ¥ix,y): ﬁ’(x,y)
2. ¥ix,y): PB(X'Y) = True = F(x,y) > Flrem(y,x),x).
Proot :
[ﬁ,(x,y) = True = (x,y)eD A (x > y)
2 (rem(y,x) = y) A (y > rem(x,y) > 0)
= rem(y,x) > rem(x,y)

= F(x,y) > F(y,x).

2. Pa(x,y) = True = (x,y)eD A (x ¥ y) A (rem(y,x) # 0) A (rem(y,x),x)eD
= (x positive integer) A rem(y,x) positive integer
L
= rem(y,x) > rem(x,rem(y,x))

=2 Fix,y) > Flrem{(y,x),x).

S0 by corollary |, it follows that the interpreted graph

(Figure 4) terminates, which implies the desired result.

*Note that for every non-negative integer x, and for every
positive z: z > rem(x,z) > O.

99

REFERENCES

Floyd [1967]

Floyd, R. W., "Assigning Meanings to Programs,” Proceedings of

Symposia in Applied Mathematics, Volume 19, American Mathematical

Soclety, 19-32 (1967).

McCarthy [1960)
McCarthy, J., "Recursive Functions of Symbolic Expressions and

Their Computation by Machine, Part |," Communications of the
ACM 3 (4), 184-195 (April, 1960).

